Чебышева параллелограмм - определение. Что такое Чебышева параллелограмм
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Чебышева параллелограмм - определение

ДВЕ ПОСЛЕДОВАТЕЛЬНОСТИ ОРТОГОНАЛЬНЫХ МНОГОЧЛЕНОВ
Многочлен Чебышева; Многочлен Чебышёва; Полином Чебышева; Полином Чебышёва; Полиномы Чебышева; Полиномы Чебышёва; Чебышева многочлены; Многочлены Чебышева
  • Многочлены Чебышёва второго рода
  • Многочлены Чебышёва первого рода

ЧЕБЫШЕВА ПАРАЛЛЕЛОГРАММ      
плоский 4-звенный шарнирный механизм для воспроизведения движения некоторой точки звена по прямой линии без применения направляющих. Предложен в 1868 П. Л. Чебышевым.
Чебышева параллелограмм      

Шарнирный механизм, предложенный П. Л. Чебышевым в 1868 для воспроизведения движения некоторой точки механизма по прямой линии. Ч. п. представляет собой плоский шарнирный четырёхзвенник ABCD (рис.), называемый также прямолинейно-направляющим механизмом (См. Прямолинейно-направляющий механизм), в котором длины звеньев удовлетворяют соотношению 3d - a = 2b. Длина приближённо-прямолинейного участка траектории точки М становится больше с увеличением AB, но одновременно возрастает и отклонение от прямолинейности. Ч. п., показанный на рис. сплошными линиями, в среднем положении напоминает греческую букву λ и называется поэтому λ-образным. Чебышев указал также другую модификацию этого механизма AB1C1D1, показанную штриховой линией. В этой модификации, называется перекрёстной, траектория точки М совпадает с траекторией той же точки в λ-образном механизме, а длины звеньев связаны соотношениями: AB1 = C1D1 = 2b, B1C1 = 2a, B1M = a, AD1 = 2d. Известен также Ч. п., в котором угол между линиями СВ и СМ отличается от 180°. Ч. п. применяется в приборах для получения прямолинейного движения точки без направляющих.

Лит.: Чебышев П. Л., Об одном механизме, Полн. собр. соч., т. 4, М,-Л., 1948.

Н. И. Левитский.

Чебышева параллелограмм.

ЧЕБЫШЕВА МНОГОЧЛЕНЫ         
специальная система многочленов, ортогональных с весом (Чебышева многочлен 1-го рода) или с весом (Чебышева многочлен 2-го рода) на отрезке [-1; 1] (см. Ортогональная система функций). Введены в 1854 П. Л. Чебышевым.

Википедия

Многочлены Чебышёва

Многочле́ны Чебышёва — две последовательности ортогональных многочленов T n ( x ) {\displaystyle T_{n}(x)} и U n ( x ) , n = { 0 , 1 , } , {\displaystyle U_{n}(x),n=\{0,1,\dots \},} названные в честь Пафнутия Львовича Чебышёва:

  • Многочлен Чебышёва первого рода T n ( x ) {\displaystyle T_{n}(x)} характеризуется как многочлен степени n {\displaystyle n} со старшим коэффициентом 2 n 1 {\displaystyle 2^{n-1}} , который меньше всего отклоняется от нуля на отрезке [ 1 , 1 ] {\displaystyle [-1,1]} . Впервые рассмотрены самим Чебышёвым.
  • Многочлен Чебышёва второго рода U n ( x ) {\displaystyle U_{n}(x)} характеризуется как многочлен степени n {\displaystyle n} со старшим коэффициентом 2 n {\displaystyle 2^{n}} , интеграл от абсолютной величины которого по отрезку [ 1 , 1 ] {\displaystyle [-1,1]} принимает наименьшее возможное значение. Впервые рассмотрены в совместной работе двух учеников Чебышёва — Коркина и Золотарёва.

Многочлены Чебышёва играют важную роль в теории приближений, поскольку корни многочленов Чебышёва первого рода используются в качестве узлов в интерполяции алгебраическими многочленами.

Что такое ЧЕБЫШЕВА ПАРАЛЛЕЛОГРАММ - определение